Ras triggers acidosis-induced activation of the extracellular-signal-regulated kinase pathway in cardiac myocytes.

نویسندگان

  • Robert S Haworth
  • Semjidmaa Dashnyam
  • Metin Avkiran
چکیده

In cardiac myocytes, sustained (3 min) intracellular acidosis activates the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway and, through this pathway, increases sarcolemmal NHE (Na+/H+ exchanger) activity [Haworth, McCann, Snabaitis, Roberts and Avkiran (2003) J. Biol. Chem. 278, 31676-31684]. In the present study, we aimed to determine the time-dependence, pH-dependence and upstream signalling mechanisms of acidosis-induced ERK1/2 activation in ARVM (adult rat ventricular myocytes). Cultured ARVM were subjected to intracellular acidosis for up to 20 min by exposure to NH4Cl, followed by washout with a bicarbonate-free Tyrode solution containing the NHE1 inhibitor cariporide. After the desired duration of intracellular acidosis, the phosphorylation status of ERK1/2 and its downstream effector p90(RSK) (90 kDa ribosomal S6 kinase) were determined by Western blotting. This revealed a time-dependent transient phosphorylation of both ERK1/2 and p90(RSK) by intracellular acidosis (intracellular pH approximately 6.6), with maximum activation occurring at 3 min and a return to basal levels by 20 min. When the degree of intracellular acidosis was varied from approximately 6.8 to approximately 6.5, maximum ERK1/2 phosphorylation was observed at an intracellular pH of 6.64. Inhibition of MEK1/2 [MAPK (mitogen-activated protein kinase)/ERK kinase 1/2) by pre-treatment of ARVM with U0126 or adenoviral expression of dominant-negative D208A-MEK1 protein prevented the phosphorylation of ERK1/2 by sustained intracellular acidosis, as did inhibition of Raf-1 with GW 5074 or ZM 336372. Interference with Ras signalling by the adenoviral expression of dominant-negative N17-Ras protein or with FPT III (farnesyl protein transferase inhibitor III) also prevented acidosis-induced ERK1/2 phosphorylation, whereas inhibiting G-protein signalling [by adenoviral expression of RGS4 or Lsc, the RGS domain of p115 RhoGEF (guanine nucleotide-exchange factor)] or protein kinase C (with bisindolylmaleimide I) had no effect. Our data show that, in ARVM, sustained intracellular acidosis activates ERK1/2 through proximal activation of the classical Ras/Raf/MEK pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell type-specific angiotensin II-evoked signal transduction pathways: critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts.

Angiotensin II (Ang II) induces hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. To determine the molecular mechanism by which Ang II displayed different effects on cardiac myocytes and fibroblasts, we examined signal transduction pathways leading to activation of extracellular signal-regulated kinases (ERKs). Ang II-induced ERK activation was abolished by pretreatment wi...

متن کامل

Cell Type–Specific Angiotensin II–Evoked Signal Transduction Pathways Critical Roles of Gbg Subunit, Src Family, and Ras in Cardiac Fibroblasts

Angiotensin II (Ang II) induces hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. To determine the molecular mechanism by which Ang II displayed different effects on cardiac myocytes and fibroblasts, we examined signal transduction pathways leading to activation of extracellular signal–regulated kinases (ERKs). Ang II–induced ERK activation was abolished by pretreatment wi...

متن کامل

Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro.

Although MAP (mitogen-activated protein) kinases are implicated in cell proliferation and differentiation in many cell types, the role of MAP kinases in cardiac hypertrophy remains unclear. We examined the role of extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAP kinase in angiotensin II (Ang II)-induced hypertrophy compared with phenylephrine-induce...

متن کامل

Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats.

A growing body of evidence has suggested that oxidative stress causes cardiac injuries during ischemia/reperfusion. Extracellular signal-regulated kinases (ERKs) have been reported to play pivotal roles in many aspects of cell functions and to be activated by oxidative stress in some types of cells. In this study, we examined oxidative stress-evoked signal transduction pathways leading to activ...

متن کامل

Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both extracellular-signal-regulated kinase and p38 mitogen-activated protein kinase.

G-protein-coupled receptor agonists are powerful stimulators of mitogen-activated protein kinase (MAPK) cascades in cardiac myocytes. However, little is known regarding the physiological activation of enzymes downstream of MAPKs. We examined the activation of mitogen- and stress-activated protein kinase-1 (MSK1), a downstream target of MAPKs, in adult rat cardiac myocytes by phenylephrine and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 399 3  شماره 

صفحات  -

تاریخ انتشار 2006